这项研究讨论了半监督学习的影响与验证的语言模型,以生成数据到文本。当还补充大规模语言模型时,尚不清楚半监督学习是否仍然有用。这项研究的目的是通过将仅补充语言模型的数据到文本系统与两个数据到文本系统进行比较,这些系统通过数据增强或伪标记的半固定学习方法而富含数据。结果表明,半监督学习会导致多样性指标的得分更高。在输出质量方面,使用伪标记方法扩展数据到文本系统的训练集确实提高了文本质量分数,但是数据增强方法在没有训练设置扩展的情况下得出了与系统相似的分数。这些结果表明,即使也存在语言模型,半监督的学习方法也可以增强产出质量和多样性。
translated by 谷歌翻译
Panoptic semonation组合实例和语义预测,允许同时检测“事物”和“东西”。在许多具有挑战性的问题中有效地接近远程感测的数据中的Panoptic分段可能是吉祥的,因为它允许连续映射和特定的目标计数。有几个困难阻止了遥感中这项任务的增长:(a)大多数算法都设计用于传统图像,(b)图像标签必须包含“事物”和“填写”类,并且(c)注释格式复杂。因此,旨在解决和提高遥感中Panoptic分割的可操作性,这项研究有五个目标:(1)创建一个新的Panoptic分段数据准备管道,(2)提出注释转换软件以产生Panoptic注释; (3)在城市地区提出一个小说数据集,(4)修改任务的Detectron2,(5)评估城市环境中这项任务的困难。我们使用的空中图像,考虑14级,使用0,24米的空间分辨率。我们的管道考虑了三个图像输入,所提出的软件使用点Shapefile来创建Coco格式的样本。我们的研究生成了3,400个样本,具有512x512像素尺寸。我们使用了带有两个骨干板(Reset-50和Reset-101)的Panoptic-FPN,以及模型评估被视为语义实例和Panoptic指标。我们获得了93.9,47.7和64.9的平均iou,box ap和pq。我们的研究提出了一个用于Panoptic Seation的第一个有效管道,以及用于其他研究人员的广泛数据库使用和处理需要彻底了解的其他数据或相关问题。
translated by 谷歌翻译
车辆分类是一台热电电脑视觉主题,研究从地面查看到顶视图。在遥感中,顶视图的使用允许了解城市模式,车辆集中,交通管理等。但是,在瞄准像素方面的分类时存在一些困难:(a)大多数车辆分类研究使用对象检测方法,并且最公开的数据集设计用于此任务,(b)创建实例分段数据集是费力的,并且(C )传统的实例分段方法由于对象很小,因此在此任务上执行此任务。因此,本研究目标是:(1)提出使用GIS软件的新型半监督迭代学习方法,(2)提出一种自由盒实例分割方法,(3)提供城市规模的车辆数据集。考虑的迭代学习程序:(1)标记少数车辆,(2)在这些样本上列车,(3)使用模型对整个图像进行分类,(4)将图像预测转换为多边形shapefile,(5 )纠正有错误的一些区域,并将其包含在培训数据中,(6)重复,直到结果令人满意。为了单独的情况,我们考虑了车辆内部和车辆边界,DL模型是U-Net,具有高效网络B7骨架。当移除边框时,车辆内部变为隔离,允许唯一的对象识别。要恢复已删除的1像素边框,我们提出了一种扩展每个预测的简单方法。结果显示与掩模-RCNN(IOU中67%的82%)相比的更好的像素 - 明智的指标。关于每个对象分析,整体准确性,精度和召回大于90%。该管道适用于任何遥感目标,对分段和生成数据集非常有效。
translated by 谷歌翻译
心脏听诊是用于检测和识别许多心脏病的最具成本效益的技术之一。基于Auscultation的计算机辅助决策系统可以支持他们的决定中的医生。遗憾的是,在临床试验中的应用仍然很小,因为它们中的大多数仅旨在检测音盲局部信号中的额外或异常波的存在,即,仅提供二进制地面真理变量(普通VS异常)。这主要是由于缺乏大型公共数据集,其中存在对这种异常波(例如,心脏杂音)的更详细描述。为基于听诊的医疗建议系统铺平了更有效的研究,我们的团队准备了目前最大的儿科心声数据集。从1568名患者的四个主要听诊位置收集了5282个录音,在此过程中,手动注释了215780人的心声。此外,并且首次通过专家注释器根据其定时,形状,俯仰,分级和质量来手动注释每个心脏杂音。此外,鉴定了杂音的听诊位置以及杂音更集中检测到杂音的位置位置。对于相对大量的心脏声音的这种详细描述可以为新机器学习算法铺平道路,该算法具有真实世界的应用,用于检测和分析诊断目的的杂波。
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
Deep Reinforcement Learning (RL) agents are susceptible to adversarial noise in their observations that can mislead their policies and decrease their performance. However, an adversary may be interested not only in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper presents a metric that measures the exact impact of adversarial attacks against such properties. We use this metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to concisely assess a system's robustness against attacks.
translated by 谷歌翻译
Vision Transformers (ViTs) have become a dominant paradigm for visual representation learning with self-attention operators. Although these operators provide flexibility to the model with their adjustable attention kernels, they suffer from inherent limitations: (1) the attention kernel is not discriminative enough, resulting in high redundancy of the ViT layers, and (2) the complexity in computation and memory is quadratic in the sequence length. In this paper, we propose a novel attention operator, called lightweight structure-aware attention (LiSA), which has a better representation power with log-linear complexity. Our operator learns structural patterns by using a set of relative position embeddings (RPEs). To achieve log-linear complexity, the RPEs are approximated with fast Fourier transforms. Our experiments and ablation studies demonstrate that ViTs based on the proposed operator outperform self-attention and other existing operators, achieving state-of-the-art results on ImageNet, and competitive results on other visual understanding benchmarks such as COCO and Something-Something-V2. The source code of our approach will be released online.
translated by 谷歌翻译
The usage of deep neural networks in safety-critical systems is limited by our ability to guarantee their correct behavior. Runtime monitors are components aiming to identify unsafe predictions and discard them before they can lead to catastrophic consequences. Several recent works on runtime monitoring have focused on out-of-distribution (OOD) detection, i.e., identifying inputs that are different from the training data. In this work, we argue that OOD detection is not a well-suited framework to design efficient runtime monitors and that it is more relevant to evaluate monitors based on their ability to discard incorrect predictions. We call this setting out-ofmodel-scope detection and discuss the conceptual differences with OOD. We also conduct extensive experiments on popular datasets from the literature to show that studying monitors in the OOD setting can be misleading: 1. very good OOD results can give a false impression of safety, 2. comparison under the OOD setting does not allow identifying the best monitor to detect errors. Finally, we also show that removing erroneous training data samples helps to train better monitors.
translated by 谷歌翻译
There is an increasing need in our society to achieve faster advances in Science to tackle urgent problems, such as climate changes, environmental hazards, sustainable energy systems, pandemics, among others. In certain domains like chemistry, scientific discovery carries the extra burden of assessing risks of the proposed novel solutions before moving to the experimental stage. Despite several recent advances in Machine Learning and AI to address some of these challenges, there is still a gap in technologies to support end-to-end discovery applications, integrating the myriad of available technologies into a coherent, orchestrated, yet flexible discovery process. Such applications need to handle complex knowledge management at scale, enabling knowledge consumption and production in a timely and efficient way for subject matter experts (SMEs). Furthermore, the discovery of novel functional materials strongly relies on the development of exploration strategies in the chemical space. For instance, generative models have gained attention within the scientific community due to their ability to generate enormous volumes of novel molecules across material domains. These models exhibit extreme creativity that often translates in low viability of the generated candidates. In this work, we propose a workbench framework that aims at enabling the human-AI co-creation to reduce the time until the first discovery and the opportunity costs involved. This framework relies on a knowledge base with domain and process knowledge, and user-interaction components to acquire knowledge and advise the SMEs. Currently,the framework supports four main activities: generative modeling, dataset triage, molecule adjudication, and risk assessment.
translated by 谷歌翻译
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet
translated by 谷歌翻译